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OutlineOutline

❏ Plasma
❏ Sheaths
❏ Dimensionless parameters
❏ Pulsed plasmas and sheaths
❏ Selected examples of pulsed plasma processing:

❏ Plasma Immersion Ion Processing (PIIP, pulsed CVD)
❏ Pulsed filtered arc deposition, and MePIIID
❏ Pulsed magnetron sputtering

This talk is a mixture of tutorial, review, and original
research paper.
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Pulsed PlasmasPulsed Plasmas
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PlasmaPlasma

❏ 4th state of matter
❏ ensemble of charged particles with collective

behavior
❏ in the lab generated by some sort of discharge
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Characteristic Parameters of PlasmasCharacteristic Parameters of Plasmas
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Distribution Functions andDistribution Functions and
Rate CoefficientsRate Coefficients
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Collisions in PlasmasCollisions in Plasmas
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Temperature (Non-)EquilibriumTemperature (Non-)Equilibrium
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Plasma and SheathsPlasma and Sheaths



André Anders, Plasma Applications Group

Sheaths and PresheathSheaths and Presheath
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Re-interpretation ofRe-interpretation of
Child Law (1911) for Plasma SheathChild Law (1911) for Plasma Sheath
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Dimensionless ParametersDimensionless Parameters

❏ Examples:
❏ degree of ionization

❏ duty cycle

❏ Knudsen number

❏ pulse rise parameter

quantity of unit dimensionless parameter = 
characteristic parameter of unit 
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❏ Advantage of using dimensionless parameters:

❏ Example:
❏ collisionality in the sheath region =

Dimensionless ParametersDimensionless Parameters

In a dynamic situation, usually both the normalized and
the normalizing quantities change.  The elegance and

power of dimensionless parameters is to be able to
immediately evaluate a physical situation.

mean free path
sheath thickness
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PulsedPulsed Plasmas Plasmas

❏ When pulses are applied: new set of parameters or
“control knobs” appear:

❏ pulse duration
❏ duty cycle
❏ pulse amplitude

❏ distinction between average and pulse parameters
❏ extreme plasma parameters are possible during pulses
❏ process can have momentary high power, leading to

more energetic and ionized particles in plasma

on

on off

t
t t

δ =
+

Energetic CondensationEnergetic Condensation
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Energetic Relation BetweenEnergetic Relation Between
Implantation and Deposition ProcessesImplantation and Deposition Processes
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sputter yield = 1 for Ei=300-1200 eV

} Film growth is still possible for
low duty cycle of bias

evaporation

sputtering

cathodic arc deposition

Ion plating, MePIIID
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Transient SheathTransient Sheath
❏ Resource:  PIII theory.
❏ conformal ion implantation of plasma ions by

acceleration in high voltage sheath
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Sheath DevelopmentSheath Development

non-driven
sheath is
very thin

Application of dimensionless parameters:
Ion matrix sheath exists only if

, 1rise rise pl itτ ω= <
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Sheath DevelopmentSheath Development

, 1rise rise pl itτ ω= >• If pulse rise is slow:  

Ion matrix sheath does not exist
but time-depended Child sheath.

• If pulse sequence is fast  

Multiple-pulse effects exist.

1off off restoret tτ = <

Examples of
dimensionless

parameters
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Transient SheathTransient Sheath

B. Wood, in: Handbook of PIII&D, Wiley, N.Y. 2000

First bias pulse
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Transient SheathTransient Sheath

B. Wood, in: Handbook of PIII&D, Wiley, N.Y. 2000

After first bias pulse
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Transient SheathTransient Sheath

B. Wood, in: Handbook of PIII&D, Wiley, N.Y. 2000

Second bias pulse
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Multiple-Pulse EffectsMultiple-Pulse Effects
at High Duty Cycleat High Duty Cycle
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Multiple-Pulse EffectsMultiple-Pulse Effects
at High Duty Cycleat High Duty Cycle
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Dynamic SheathDynamic Sheath

W. Möller, et al., Surf. Coat. Technol. 116-119 (1999) 1

Dimensionless parameter as condition for
conformal ion treatment:

characteristic feature size 1
sheath thickness

Λ = >
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Plasma Immersion Ion ProcessingPlasma Immersion Ion Processing

❏ PIIP - one kind of pulsed plasma CVD - proposed at
LANL

❏ M. Nastasi, et al., Surf. Coat. Technol. 136 (2001) 162
❏ K.C. Walter, et al., Surf. Coat. Technol. 156 (2002) 306

❏ Plasma Immersion Technique with
❏ carbon-containing gases (e.g. C2H2) for DLC films
❏ organo-metallic precursor gases  for e.g. metal carbo-

nitride films

❏ pulsed sheath is utilized
❏ to attract ions from plasma for energetic condensation

AND
❏ to accelerate secondary electrons for plasma generation
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❏ designed for 3-dim coatings
❏ however, uniformity / conformal treatment only if

Plasma Immersion Ion ProcessingPlasma Immersion Ion Processing

sheath size 1
feature size

<
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Effect of self-ion bombardmentEffect of self-ion bombardment
on film microstructureon film microstructure

Martin et al. JVST 5 (1987) 22

❏ Densification of Ti film by Ti ions (self-ion assistance)
❏ MC computer simulation (1987)
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Pulsed Filtered Cathodic ArcsPulsed Filtered Cathodic Arcs

• clean
metal

plasma

• ta-C
• metal films
• compounds
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MePIIIDMePIIID
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MePIIIDMePIIID
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Metallization by MePIIIDMetallization by MePIIID

O.R. Monteiro, J. Vac. Sci. Technol. B 17 (1999) 1094

voids form if vapor / plasma
does not have correct impact
angle and energy perfect filling of trenches

Copper metallization of sub-µm trenches and vias
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Diffusion Barriers by MePIIIDDiffusion Barriers by MePIIID

❏ Copper diffuses in silicon,
hence need for diffusion barrier

❏ Ta and TaN can serve as barrier
❏ can be deposited conformally

using MePIIID

O.R. Monteiro, J. Vac. Sci.
Technol. B 17 (1999) 1094
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Initial Plasma CompositionInitial Plasma Composition

❏ Plasma can be significantly contaminated at
beginning of each pulse, example: Ta arc, 250 µs

f > 1 p.p.s f < 0.1 p.p.s
G.Yu. Yushkov et al., IEEE Trans. Plasma Sci. 26 (1998) 220.
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Temporal Development of PlasmasTemporal Development of Plasmas

Example: Al plasma in oxygen background gas

Mean ion
charge state

J. M. Schneider, et al., Appl. Phys. Lett. 75, (1999) 612.
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a-C multilayera-C multilayer❏ Si substrate, PIII
intermixed layer
(C, 2.2 keV
 2µs on/6 µs off)

❏ “hard” a-C /
“superhard” a-C
(4 double layers, with
2200 eV and 100 eV,
each)
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Pulsed SputteringPulsed Sputtering

❏ Proposed by Kouznetsov and co-workers in late 1990s
❏ use of traditional sputter magnetron
❏ increase power during pulses by > 2 orders of

magnitude
❏ average power is within acceptable level by using low

duty cycle
❏ observe increased degree of ionization
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Voltage-Current Waveform forVoltage-Current Waveform for
Pulsed SputteringPulsed Sputtering

From: V. Kouznetsov, et al., Surf. Coat. Technol. 122, 290-293 (1999).

(no simmer
discharge)

Peak power
500 kW (!)

Cu target, 65 mPa  Ar



André Anders, Plasma Applications Group

Distribution Functions andDistribution Functions and
Rate CoefficientsRate Coefficients

Mean free path
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V-I CharacteristicsV-I Characteristics
of a Magnetron Dischargeof a Magnetron Discharge

Slope q→1

A similar result was
obtained for Cr, see: A.P.
Ehiasarian, et al., Vacuum

65, 147 (2002).

q
d dI cV=
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Physics of Pulsed SputteringPhysics of Pulsed Sputtering

❏ Transition in characteristics:

partially ionized plasma

gas-species
dominated plasma

metal-species
dominated plasma

fully ionized plasma

High power density
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❏ If there was no thermalization of sputtered atoms with
background gas

❏ thermalized and ionized atoms may return to target:

0 02 ~ 1000 m/sa a au E m=

Knudsen number for ionization Kn 1ionλ= " #
❏ thermalization
❏ ionization

Physics of Pulsed SputteringPhysics of Pulsed Sputtering

Self-sputtering
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Self-Sustained Self-SputteringSelf-Sustained Self-Sputtering

sputtering 
from target

diffusion

thermalization
by collisions

ionization

ion acceleration in
target sheath

to substrate
(ions)

α

γ

β

Condition of
Self-Sustaining
Self-Sputtering

1α β γ >

to substrate
(atoms)
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Self-Sputter YieldSelf-Sputter Yield

Monte Carlo
Simulations

Carbon cannot go in
mode of self-sustained

self-sputtering

AgAg
CuCu
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Summary / ConclusionsSummary / Conclusions

❏ Pulsed plasma processing
❏ high kinetic energy in allows films growth to occur much

further from thermodynamic equilibrium than with
continuous processing

❏ extreme pulsed plasma parameters can be reached
❏ new process “control knobs” appear, such as duty cycle

and pulse duration

❏ Many examples
❏ here in detail: emerging technology of pulsed sputtering
❏ for many materials: pulsed sputtering may lead to the

mode of pulsed, self-sustained self-sputtering


